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JOB SEQUENCING WITH 

DEADLINES 

The problem is stated as below. 

• There are n jobs to be processed on a machine. 

• Each job i has a deadline di≥ 0 and profit pi≥0 . 

• Pi is earned iff the job is completed by its deadline. 

• The job is completed if it is processed on a machine 

for unit time. 

• Only one machine is available for processing jobs. 

• Only one job is processed at a time on the machine. 
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JOB SEQUENCING WITH 

DEADLINES (Contd..) 

• A feasible solution is a subset of jobs J such that 

each job is completed by its deadline. 

• An optimal solution is a feasible solution with 

maximum profit value. 

 Example : Let n = 4, (p1,p2,p3,p4) = (100,10,15,27), 

(d1,d2,d3,d4) = (2,1,2,1) 
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JOB SEQUENCING WITH 

DEADLINES (Contd..) 
Sr.No. Feasible  Processing Profit value 

  Solution  Sequence 

(i)  (1,2)  (2,1)  110 

(ii)  (1,3)  (1,3) or (3,1) 115 

(iii) (1,4)  (4,1)  127  is the optimal one 

(iv) (2,3)  (2,3)  25 

(v)  (3,4)  (4,3)  42 

(vi) (1)  (1)  100 

(vii) (2)  (2)  10 

(viii) (3)  (3)  15 

(ix) (4)  (4)  27 
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GREEDY ALGORITHM TO 

OBTAIN AN OPTIMAL SOLUTION 

• Consider the jobs in the non increasing 

order of profits subject to the constraint that 

the resulting job sequence J is a feasible 

solution. 

• In the example considered before, the non-

increasing profit vector is  

 (100   27    15    10)         (2    1    2    1)      

p1  p4     p3    p2                  d1  d4 d3   d2 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

 J = { 1} is a feasible one 

 J = { 1, 4} is a feasible one with processing  

         sequence ( 4,1) 

 J = { 1, 3, 4} is not feasible  

 J = { 1, 2, 4} is not feasible  

 J = { 1, 4} is optimal 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

Theorem: Let J be a set of K jobs and   

   = (i1,i2,….ik) be a permutation of jobs in J 

such that di1 ≤ di2 ≤…≤ dik. 

• J is a feasible solution iff the jobs in J can 

be processed in the order  without 

violating any deadly. 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

Proof:  

• By definition of the feasible solution if the 
jobs in J can be processed in the order 
without violating any deadline then J is a 
feasible solution.  

• So, we have only to prove that if J is a 
feasible one, then  represents a possible 
order in which the jobs may be processed. 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• Suppose J is a feasible solution. Then there 

exists 1 = (r1,r2,…,rk) such that  

  drj  j,        1  j <k   

  i.e. dr1 1, dr2  2,  …, drk  k. 

 each job requiring an unit time. 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

•  = (i1,i2,…,ik)  and 1 = (r1,r2,…,rk)  

• Assume  1  . Then let a be the least 

index in which  1 and  differ. i.e. a is such 

that ra
  ia. 

• Let  rb
 = ia, so b > a (because for all indices j 

less than a rj = ij).  

• In  1  interchange ra  and  rb. 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

 = (i1,i2,… ia     ib     ik )  [rb occurs before ra  

      in i1,i2,…,ik] 

 1 = (r1,r2,… ra     rb  …   rk )   

 i1=r1, i2=r2,…ia-1= ra-1, ia
  rb but ia

 = rb  
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• We know di1  di2  … dia  dib …  dik. 

• Since ia  = rb, drb  dra or dra  drb. 

• In the feasible solution dra  a  drb  b 

• So if we interchange ra and rb, the resulting 

permutation 11= (s1, … sk) represents an 

order with the least index in which 11 and 

 differ is incremented by one. 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• Also the jobs in 11 may be processed 

without violating a deadline. 

• Continuing in this way, 1 can be 

transformed into  without violating any 

deadline. 

• Hence the theorem is proved. 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• Theorem2:The Greedy method obtains an optimal 

solution to the job sequencing problem. 

• Proof: Let(pi, di) 1in define any instance of the 

job sequencing problem.  

• Let I be the set of jobs selected by the greedy 

method.  

• Let J be the set of jobs in an optimal solution. 

• Let us assume I≠J .  
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• If J C I then J cannot be optimal, because 

less number of jobs gives less profit which 

is not true for optimal solution.  

• Also, I C J  is ruled out by the nature of the 

Greedy method. (Greedy method selects 

jobs (i) according to maximum profit order 

and (ii) All jobs that can be finished before 

dead line are included).  
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• So, there exists jobs a and b such that aI, 
aJ, bJ,bI. 

• Let a be a highest profit job such that aI, 
aJ. 

•  It follows from the greedy method that pa  
pb for all jobs bJ,bI. (If pb > pa then the 
Greedy method would consider job b before 
job a and include it in I). 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• Let Si and Sj be feasible schedules for job 
sets I and J respectively.  

• Let i be a job such that iI and iJ.  

 (i.e. i is a job that belongs to the schedules 
generated by the Greedy method and 
optimal solution). 

• Let i be scheduled from t to t+1 in SI and 
t1to t1+1 in Sj. 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• If t < t1, we may interchange the job scheduled in [t1 
t1+1] in SI with i; if no job is scheduled in [t1 t1+1] in 
SI then i is moved to that interval. 

• With this, i will be scheduled at the same time in SI 
and SJ. 

• The resulting  schedule is also feasible. 

• If t1 < t, then a similar transformation may be made in 
Sj.  

• In this way, we can obtain schedules SI
1 and SJ

1 with 
the property that all the jobs common to I and J are 
scheduled at the same time.  
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• Consider the interval [Ta Ta+1] in SI
1 in which the 

job a is scheduled.  

• Let b be the job scheduled in Sj
1 in this interval. 

• As a is the highest profit job, pa  pb. 

• Scheduling job a from ta to ta+1 in Sj
1 and 

discarding job b gives us a feasible schedule for 
job set J1 = J-{b} U  {a}. Clearly J1 has a profit 
value no less than that of J and differs from in one 
less job than does J. 
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GREEDY ALGORITHM TO OBTAIN AN 

OPTIMAL SOLUTION (Contd..) 

• i.e., J1 and I differ by m-1 jobs if J and I 

differ from m jobs.  

• By repeatedly using the transformation, J 

can be transformed into I with no decrease 

in profit value. 

• Hence I must also be optimal. 
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GREEDY ALGORITHM FOR JOB 

SEQUENSING WITH DEADLINE 

Procedure greedy job (D, J, n)                   J may be represented by  

// J is the set of n jobs to be completed//       one dimensional array J (1: K)  

// by their deadlines //                                    The deadlines are 

    J {1}              D (J(1))  D(J(2))  ..  D(J(K)) 

    for I  2 to n do                                         To  test if JU {i} is feasible,  

  If  all jobs in JU{i} can be completed         we insert i into J and verify 

by their deadlines                     D(J®)  r            1  r  k+1 

  then J  JU{I} 

end if 

    repeat 

  end greedy-job 
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GREEDY  ALGORITHM FOR 

SEQUENCING UNIT TIME JOBS 

Procedure JS(D,J,n,k) 

// D(i)  1, 1 i  n are the deadlines // 

// the jobs are ordered such that // 

// p1  p2  …….  pn // 

// in the optimal solution ,D(J(i)  D(J(i+1)) // 

    // 1  i  k // 

integer D(o:n), J(o:n), i, k, n, r 

D(0) J(0)  0 

// J(0) is a fictious job with D(0) = 0 // 

K1; J(1) 1   // job one is inserted into J // 

for i 2 to do // consider jobs in non increasing order of pi // 
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GREEDY  ALGORITHM FOR 

SEQUENCING UNIT TIME JOBS (Contd..) 

// find the position of i and check  feasibility of insertion // 

    r k   // r and k are indices for existing job in J // 

// find r such that i can be inserted after r // 

while D(J(r)) > D(i) and D(i) ≠ r do 

// job r can be processed after i and // 

// deadline of job r is not exactly r // 

    r r-1 // consider whether job r-1 can be processed after i // 

repeat 
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GREEDY  ALGORITHM FOR 

SEQUENCING UNIT TIME JOBS (Contd..) 

if D(J(r))  d(i) and D(i) > r then  

// the new job i can come after existing  job r;  

insert i into J at position r+1 // 

for I  k to r+1 by –1 do  

J(I+1) J(l) // shift jobs( r+1) to k right by//  

//one position // 

repeat 
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GREEDY  ALGORITHM FOR 

SEQUENCING UNIT TIME JOBS (Contd..) 

J(r+1)i ;  k k+1 

// i is inserted at position r+1 // 

// and total jobs in J are increased by one // 

repeat 

end JS 
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COMPLEXITY ANALYSIS 

OF JS ALGORITHM 
• Let n be the number of jobs and s be the number of 

jobs included in the solution.  

• The loop between lines 4-15 (the for-loop) is 
iterated  (n-1)times. 

• Each iteration takes O(k) where k is the number of 
existing jobs. 

The time needed by the algorithm is 0(sn) s  n so 
the worst case time is 0(n2).  

 If di = n - i+1   1  i  n, JS takes θ(n2) time  

 D and J need θ(s) amount of space. 
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A FASTER 

IMPLEMENTATION OF JS 

• SET UNION and FIND algorithms and 

using a better method to determine the 

feasibility  of a partial solution. 

• If J is a feasible subset of jobs, we can 

determine the processing time for each of 

the jobs using the following rule.  
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A FASTER IMPLEMENTATION OF 

JS (Contd..) 

• If job I has not been  assigned a processing time, 

then assign it to slot [ -1, ] where  is the 

largest integer r such that 1  r  di and the slot [ 

-1, ] is free. 

• This rule delays the processing of jobs i as much 

as possible, without need to move the existing jobs 

in order to accommodate the new job.  

• If there is no , the new job is not included. 



Assignment 

• Q.1)Explain job sequencing with deadline 

.Give one example of it. 

• Q.2)Explain faster implementation of JS 

giving an example. 
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