
1

JOB SEQUENCING WITH

DEADLINES

The problem is stated as below.

• There are n jobs to be processed on a machine.

• Each job i has a deadline di≥ 0 and profit pi≥0 .

• Pi is earned iff the job is completed by its deadline.

• The job is completed if it is processed on a machine

for unit time.

• Only one machine is available for processing jobs.

• Only one job is processed at a time on the machine.

2

JOB SEQUENCING WITH

DEADLINES (Contd..)

• A feasible solution is a subset of jobs J such that

each job is completed by its deadline.

• An optimal solution is a feasible solution with

maximum profit value.

 Example : Let n = 4, (p1,p2,p3,p4) = (100,10,15,27),

(d1,d2,d3,d4) = (2,1,2,1)

3

JOB SEQUENCING WITH

DEADLINES (Contd..)
Sr.No. Feasible Processing Profit value

 Solution Sequence

(i) (1,2) (2,1) 110

(ii) (1,3) (1,3) or (3,1) 115

(iii) (1,4) (4,1) 127 is the optimal one

(iv) (2,3) (2,3) 25

(v) (3,4) (4,3) 42

(vi) (1) (1) 100

(vii) (2) (2) 10

(viii) (3) (3) 15

(ix) (4) (4) 27

4

GREEDY ALGORITHM TO

OBTAIN AN OPTIMAL SOLUTION

• Consider the jobs in the non increasing

order of profits subject to the constraint that

the resulting job sequence J is a feasible

solution.

• In the example considered before, the non-

increasing profit vector is

 (100 27 15 10) (2 1 2 1)

p1 p4 p3 p2 d1 d4 d3 d2

5

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

 J = { 1} is a feasible one

 J = { 1, 4} is a feasible one with processing

 sequence (4,1)

 J = { 1, 3, 4} is not feasible

 J = { 1, 2, 4} is not feasible

 J = { 1, 4} is optimal

6

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

Theorem: Let J be a set of K jobs and

  = (i1,i2,….ik) be a permutation of jobs in J

such that di1 ≤ di2 ≤…≤ dik.

• J is a feasible solution iff the jobs in J can

be processed in the order  without

violating any deadly.

7

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

Proof:

• By definition of the feasible solution if the
jobs in J can be processed in the order
without violating any deadline then J is a
feasible solution.

• So, we have only to prove that if J is a
feasible one, then  represents a possible
order in which the jobs may be processed.

8

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• Suppose J is a feasible solution. Then there

exists 1 = (r1,r2,…,rk) such that

 drj  j, 1  j <k

 i.e. dr1 1, dr2  2, …, drk  k.

 each job requiring an unit time.

9

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

•  = (i1,i2,…,ik) and 1 = (r1,r2,…,rk)

• Assume  1  . Then let a be the least

index in which  1 and  differ. i.e. a is such

that ra
  ia.

• Let rb
 = ia, so b > a (because for all indices j

less than a rj = ij).

• In  1 interchange ra and rb.

10

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

 = (i1,i2,… ia ib ik) [rb occurs before ra

 in i1,i2,…,ik]

 1 = (r1,r2,… ra rb … rk)

 i1=r1, i2=r2,…ia-1= ra-1, ia
  rb but ia

 = rb

11

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• We know di1  di2  … dia  dib …  dik.

• Since ia = rb, drb  dra or dra  drb.

• In the feasible solution dra  a drb  b

• So if we interchange ra and rb, the resulting

permutation 11= (s1, … sk) represents an

order with the least index in which 11 and

 differ is incremented by one.

12

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• Also the jobs in 11 may be processed

without violating a deadline.

• Continuing in this way, 1 can be

transformed into  without violating any

deadline.

• Hence the theorem is proved.

13

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• Theorem2:The Greedy method obtains an optimal

solution to the job sequencing problem.

• Proof: Let(pi, di) 1in define any instance of the

job sequencing problem.

• Let I be the set of jobs selected by the greedy

method.

• Let J be the set of jobs in an optimal solution.

• Let us assume I≠J .

14

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• If J C I then J cannot be optimal, because

less number of jobs gives less profit which

is not true for optimal solution.

• Also, I C J is ruled out by the nature of the

Greedy method. (Greedy method selects

jobs (i) according to maximum profit order

and (ii) All jobs that can be finished before

dead line are included).

15

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• So, there exists jobs a and b such that aI,
aJ, bJ,bI.

• Let a be a highest profit job such that aI,
aJ.

• It follows from the greedy method that pa 
pb for all jobs bJ,bI. (If pb > pa then the
Greedy method would consider job b before
job a and include it in I).

16

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• Let Si and Sj be feasible schedules for job
sets I and J respectively.

• Let i be a job such that iI and iJ.

 (i.e. i is a job that belongs to the schedules
generated by the Greedy method and
optimal solution).

• Let i be scheduled from t to t+1 in SI and
t1to t1+1 in Sj.

17

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• If t < t1, we may interchange the job scheduled in [t1
t1+1] in SI with i; if no job is scheduled in [t1 t1+1] in
SI then i is moved to that interval.

• With this, i will be scheduled at the same time in SI
and SJ.

• The resulting schedule is also feasible.

• If t1 < t, then a similar transformation may be made in
Sj.

• In this way, we can obtain schedules SI
1 and SJ

1 with
the property that all the jobs common to I and J are
scheduled at the same time.

18

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• Consider the interval [Ta Ta+1] in SI
1 in which the

job a is scheduled.

• Let b be the job scheduled in Sj
1 in this interval.

• As a is the highest profit job, pa  pb.

• Scheduling job a from ta to ta+1 in Sj
1 and

discarding job b gives us a feasible schedule for
job set J1 = J-{b} U {a}. Clearly J1 has a profit
value no less than that of J and differs from in one
less job than does J.

19

GREEDY ALGORITHM TO OBTAIN AN

OPTIMAL SOLUTION (Contd..)

• i.e., J1 and I differ by m-1 jobs if J and I

differ from m jobs.

• By repeatedly using the transformation, J

can be transformed into I with no decrease

in profit value.

• Hence I must also be optimal.

20

GREEDY ALGORITHM FOR JOB

SEQUENSING WITH DEADLINE

Procedure greedy job (D, J, n) J may be represented by

// J is the set of n jobs to be completed// one dimensional array J (1: K)

// by their deadlines // The deadlines are

 J {1} D (J(1))  D(J(2))  ..  D(J(K))

 for I  2 to n do To test if JU {i} is feasible,

 If all jobs in JU{i} can be completed we insert i into J and verify

by their deadlines D(J®)  r 1  r  k+1

 then J  JU{I}

end if

 repeat

 end greedy-job

21

GREEDY ALGORITHM FOR

SEQUENCING UNIT TIME JOBS

Procedure JS(D,J,n,k)

// D(i)  1, 1 i  n are the deadlines //

// the jobs are ordered such that //

// p1  p2  …….  pn //

// in the optimal solution ,D(J(i)  D(J(i+1)) //

 // 1  i  k //

integer D(o:n), J(o:n), i, k, n, r

D(0) J(0)  0

// J(0) is a fictious job with D(0) = 0 //

K1; J(1) 1 // job one is inserted into J //

for i 2 to do // consider jobs in non increasing order of pi //

22

GREEDY ALGORITHM FOR

SEQUENCING UNIT TIME JOBS (Contd..)

// find the position of i and check feasibility of insertion //

 r k // r and k are indices for existing job in J //

// find r such that i can be inserted after r //

while D(J(r)) > D(i) and D(i) ≠ r do

// job r can be processed after i and //

// deadline of job r is not exactly r //

 r r-1 // consider whether job r-1 can be processed after i //

repeat

23

GREEDY ALGORITHM FOR

SEQUENCING UNIT TIME JOBS (Contd..)

if D(J(r))  d(i) and D(i) > r then

// the new job i can come after existing job r;

insert i into J at position r+1 //

for I  k to r+1 by –1 do

J(I+1) J(l) // shift jobs(r+1) to k right by//

//one position //

repeat

24

GREEDY ALGORITHM FOR

SEQUENCING UNIT TIME JOBS (Contd..)

J(r+1)i ; k k+1

// i is inserted at position r+1 //

// and total jobs in J are increased by one //

repeat

end JS

25

COMPLEXITY ANALYSIS

OF JS ALGORITHM
• Let n be the number of jobs and s be the number of

jobs included in the solution.

• The loop between lines 4-15 (the for-loop) is
iterated (n-1)times.

• Each iteration takes O(k) where k is the number of
existing jobs.

The time needed by the algorithm is 0(sn) s  n so
the worst case time is 0(n2).

 If di = n - i+1 1  i  n, JS takes θ(n2) time

 D and J need θ(s) amount of space.

26

A FASTER

IMPLEMENTATION OF JS

• SET UNION and FIND algorithms and

using a better method to determine the

feasibility of a partial solution.

• If J is a feasible subset of jobs, we can

determine the processing time for each of

the jobs using the following rule.

27

A FASTER IMPLEMENTATION OF

JS (Contd..)

• If job I has not been assigned a processing time,

then assign it to slot [ -1, ] where  is the

largest integer r such that 1  r  di and the slot [

-1, ] is free.

• This rule delays the processing of jobs i as much

as possible, without need to move the existing jobs

in order to accommodate the new job.

• If there is no , the new job is not included.

Assignment

• Q.1)Explain job sequencing with deadline

.Give one example of it.

• Q.2)Explain faster implementation of JS

giving an example.

28

